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Beyond dose: Pulsed antibiotic 
treatment schedules can maintain 
individual benefit while reducing 
resistance
Christopher M. Baker1,2,3,4, Matthew J. Ferrari1,4 & Katriona Shea1,4

The emergence of treatment-resistant microbes is a key challenge for disease treatment and a leading 
threat to human health and wellbeing. New drugs are always in development, but microbes regularly 
and rapidly acquire resistance. We must consider if altering how we administer drugs at the individual 
level could slow development of resistance. Here we use mathematical models to show that exposing 
microbes to drug pulses could greatly reduce resistance without increasing individual pathogen load. 
Our results stem from two key factors: the presence of antibiotics creates a selection pressure for 
antibiotic resistant microbes, and large populations of bacteria are more likely to harbor drug resistance 
than small populations. Drug pulsing targets these factors simultaneously. Short duration pulses 
minimize the time during which there is selection for resistance, and high drug concentrations minimize 
pathogen abundance. Our work provides a theoretical basis for the design of in vitro and in vivo 
experiments to test how drug pulsing might reduce the impact of drug resistant infections.

By the year 2050, antibiotic resistance is expected to cause 10,000,000 deaths per year1, posing a major problem 
for disease treatment2 as pathogens become resistant to certain drugs3–5. Developing new treatments is a way for-
ward6–8, but resistance can evolve quickly, sometimes even before drugs are approved9. In fact, it has been argued 
that slowing the evolution of antibiotic resistance can be more effective than developing new drugs10. Hence, we 
need to think carefully about how we administer drugs at the individual patient level, as novel treatment strategies 
could curb resistance evolution at the population level11.

The prevailing treatment strategy for bacterial infections is to administer antibiotics at high concentrations12. 
The rationale is that the ensuing high drug concentration will kill all microbes quickly, so that there is no chance 
for resistance to develop, while treatments at lower concentrations can assist the emergence of resistance by creat-
ing selection pressure for resistant strains13. Consequently, a considerable amount of experimental effort has gone 
into finding the drug concentrations required to suppress microbes and prevent resistance14–17. Unfortunately, in 
some circumstances it is not possible to treat at sufficiently high doses. There is a need to avoid patient side effects; 
the greatest drug concentration with which a patient can cope is termed the maximum tolerable dose. Some 
recent theoretical work has suggested that, in certain cases, treating at the maximum tolerable dose also leads to 
resistance and therefore more moderate treatment strategies could be used18,19. However, these strategies could 
lengthen patient recovery times, depending on the particular situation20.

Exploring additional possible management strategies is warranted. Microbes may lose fitness when acquiring 
de novo resistance, as the ability to cope with antibiotics often takes energy away from other processes21. Hence, 
in the absence of treatment, sensitive strains will tend to outcompete and regulate resistance in a population. This 
phenomenon occurs throughout biology, including in cancer treatment and pest control, where management 
strategies that exploit the competition between treatment-sensitive and treatment-resistant entities are becoming 
increasingly common22–24. It may also be possible to take advantage of this phenomenon in treating microbial 
infections.
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In this paper, we implement mathematical models of infections to test whether there could be antibiotic man-
agement strategies that exploit the competition between sensitive and resistant strains. We focus on pulsing strate-
gies, drawing on theory for ecological disturbances, which can be defined in terms of the frequency, intensity, and 
duration of the disturbance25,26. We conceptualise drug treatments as a type of disturbance; understanding how 
these different aspects of disturbance interact to affect a system is vital when developing management strategies.

Methods
To address our question about the potential for strain competition and disturbance to interact to improve antibi-
otic regime outcomes, we implement three different existing differential equation models of strain competition 
that have previously been used to explore antimicrobial treatments regimes and the evolution of resistance19. We 
describe each of the models below; parameter values are given in the Supplementary Information S3.

The first model describes the abundance of wild, Pw and highly resistant, Pr, pathogens and the immune 
response, I:
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We note that while we present the model as a set of differential equations, we implement a stochastic version of 
these equations as a continuous time Markov chain via the Gillespie algorithm27 (Supplementary Information S1). 
This algorithm produces stochastic realisations of the model, which, on average, are equal to the solution of the 
differential equations. While our results throughout are from the stochastic model versions, we introduce the 
remaining models in only their deterministic form, as is conventional19,28,29. There are a range of technical consid-
erations involved with using the Gillespie algorithm, which we discuss in Supplementary Information S2.

These equations allow the wild type to mutate to be highly resistant at rate μw, and both strains decay at rates 
γw and γr respectively. The immune system affects the strains equally, with parameter k, and the total pathogen 
load causes the immune response via α. The parameter δ is the decay of the immune response. Finally the func-
tions rw(c), and rr(c) are treatment-dependent replication rates of the different strains, which we model using the 
function − −b b c b(1 tanh( ( )))1 2 3 , where b1, b2 and b3 are constants, following Day and Read19. This results is a 
time-dependent replication rate; however, as the drug concentration is piecewise constant this can be addressed 
in the model and we find that is has a trivial impact on simulations via the Gillespie algorithm (Supplementary 
Information 2). We also note that other functional forms, with different appropriate underlying biochemical 
bases, could instead be used to model the effect of antibiotics on pathogen growth rates18,30. In our simulations, 
we do not vary c continuously (it is either constant or 0), so the actual function shape does not affect the simula-
tion. Rather, these general results require only that the different strains have different replication rates, depending 
on whether there is treatment or not. The model assumes that wild type pathogens have a greater replication rate 
when c = 0 than the other strains, while the highly resistant strain has the highest replication rate as c increases.

The second model introduces pathogens with intermediate resistance to antibiotics, Pi, to the system of dif-
ferential equations:
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These equations have the exact same structure as Eq. (1), with the addition of parameters associated with 
intermediate resistance. This means that it is not possible to mutate directly from wild type to highly resistant. 
Rather, wild type mutates to intermediate resistance at rate μw, which can subsequently mutate to highly resistant 
at rate μi.

The third model includes resource competition. We revert to two pathogen strains, wild, Pw, and highly resist-
ant, Pr. The immune system is omitted from the model, and instead a resource, R, is included in the system of 
differential equations:
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As with Eq. (1), the wild type is able to mutate to become resistant, and both strains have constant death rates, 
governed by dw and dr. The key differences in the growth rate are the inclusion of the resource and the omission of 
the immune system. The growth rates rw(c) and rr(c) behave in the same way as before, but they are also scaled by 
the abundance of resources. The resource itself is produced at a constant rate, θ, and decays at rate δR. Any growth 
of Pw or Pr requires resources to be available, and this growth drains the resource.

System perturbations can generally be described in terms of their frequency (e.g. how often the antibiotic is 
administered), intensity (e.g. how much antibiotic is dispensed), timing (e.g. when the antibiotic is applied), 
duration (e.g. for how long the antibiotic treatment lasts). Each of these can have different effects on the system 
dynamics, mediated by their interactions with other aspects. In the context of antibiotics, we here vary four 
aspects of the treatment regime: the dose concentration; the pulse frequency; the pulse duration; and the total 
treatment duration (Fig. 1a). We define dose in terms of its impact on the pathogen population growth rate in all 
the models; hence, it is dimensionless in this representation. We define the pulse duration to be the fraction of 
time between the start of pulses, such that a pulse duration of 1 corresponds to constant treatment, while a pulse 
duration of 0.5 means that treatment occurs 50% of the time. We vary each of these aspects to test how they affect 
the total pathogen burden (the pathogen abundance, integrated across the treatment window) and the probability 
of resistance emerging (defined as Pr > 100 for models one and two, and Pr > 300 for the resource competition 
model, following19). For each case, treatment begins once the total pathogen abundance reaches 100 
( + + ≥P P P 100w i r ), and we run the model up to T = 100.

Data availability.  All MATLAB code is publically available https://doi.org/10.6084/m9.figshare.4287809.v1. 
There was no data used in this work.

Results
In this section we focus on results from model two (Fig. 1c; three-strain plus immune system); results from the 
other two models are very similar and are presented in the Supplementary Information S4. Figure 2 shows exam-
ple simulations from the three-strain model (Fig. 1c). A constant treatment using a high dose results in relatively 
low wild type (sensitive) abundances, but does result in much higher abundances of the resistant strain, compared 
to a constant treatment of a low dose. Figure 2c shows the outcome when we shift to a pulsed strategy; the abun-
dance of the resistant strain is reduced, compared to both constant treatment strategies.

We ran simulations across a wide range of dose concentration, pulse duration and pulse frequencies. For each 
combination, we calculate the probability of resistance emerging and the total pathogen burden. In Fig. 3, we show 
results for model two; again the results for the other two models are similar and are given in the Supplementary 
Information S4. We find that very high doses result in low pathogen burdens and low probability of resistance, 
but this regime often requires doses above the maximum tolerable dose. The pulsed treatments lower the proba-
bility of resistance compared to the constant treatment, particularly for moderate dose concentrations. Again, we 
find the same qualitative behaviour with each of the models; reducing pulse duration reduces the probability of 
resistance (see Supplementary Information S4). Importantly, there appears to be a dose concentration threshold: 
at doses below the threshold, pulsed treatment reduces the probability of resistance without adversely affecting 
the pathogen burden. For example, if the maximum dose that a patient can tolerate is 0.46, then the probability of 
resistance can be reduced from 0.06 to 0.01 by shifting from a continuous dose to a pulse duration of 0.5, without 
affecting the pathogen burden (Fig. 3, red line). However, reducing the duration further would incur an increased 
patient bacterial burden.

Figure 1.  (a) Treatment schedules. The dose concentration is the amount of drug administered in each pulse. 
The treatment frequency is number of pulses per unit time, meaning the time between pulses the reciprocal of 
the treatment frequency. The pulse duration is how long each pulse lasts and we measure this as a fraction of the 
time between pulses. Finally, treatment duration is the total time window where treatment occurs. (b–d) The 
different model structures that we use19. Ps, Pi and Pr are pathogen strains which are sensitive to treatment, have 
intermediate resistance, and are highly resistant to treatment, respectively. T is the treatment being applied, I is 
the immune response and R is resources. In each case, sensitive microbes can mutate to become more resistant 
to treatment. In (b) and (c), the immune system suppresses all strain types. In (d), the strains compete for 
resources.

https://doi.org/10.6084/m9.figshare.4287809.v1
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Varying the dose duration without changing the treatment duration means that the total amount of drug 
used varies between simulations. Hence, we also ran simulations where we used a constant number of doses with 
a constant dose duration, but varied the treatment frequency, so that the total drug use was kept constant (see 
Supplementary Information S4). We obtained very similar results for these simulations. The probability of resist-
ance emergence peaks at moderate dose. Interestingly, however, in these total drug-controlled simulations, the 
total pathogen burden is generally lower for the pulsed strategies compared to the constant strategy.

Discussion
In this paper we used existing stochastic models of bacterial dynamics and resistance evolution19 to test 
whether drug pulses could be a viable treatment option. We analysed three different model structures, 
which include immune response, resource competition, and multiple levels of resistance (Fig. 1b,c and d;  
Supplementary Information S4). Our aim was to find treatment regimes that reduce the emergence of 

Figure 2.  Individual realisations from the model with a wild strain (blue), an intermediate resistant strain (not 
shown), a highly resistant strain (red) and immune response (not shown). (a) and (b) have constant treatment 
with dose = 0.3 and dose = 0.5 respectively. (c) Has a pulse duration of 0.5 and dose = 0.5. The pulsed treatment 
has less resistance, but the abundance of wild type is higher than in the constant treatments.

Figure 3.  The probability of resistance and the total pathogen burden for different treatment strategies using 
the three-strain model (Fig. 1c). Here the total treatment window is 20 days and the treatment frequency is 1. 
(a) Each circle is the average of 100,000 simulations, and the dashed lines connect treatments that have the same 
dose concentration. The ideal treatment strategies are in the bottom left of the figure, as these minimise the 
probability of resistance and the pathogen burden. However, these strategies require very high doses and are not 
always possible due to drug toxicity. The red dashed line at dose = 0.46 marks where altering the pulse duration 
(at or above 0.5) does not affect the pathogen burden, but does change the probability of resistance. At higher 
doses, there is a trade-off between lowering the pathogen burden and lowering the probability of resistance. 
(b,c) Show the probability of resistance and pathogen burden separately, both as a function of the dose 
concentration, and the black line in (c) indicates a region where all strategies are almost equivalent in pathogen 
burden, despite very different probabilities of resistance.
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resistance without increasing an individual patient’s total pathogen burden. We found that there are indeed a 
range of dose concentrations where moving to a pulsed strategy decreased resistance, without greatly increas-
ing pathogen burden. However, above a dose threshold we find a trade-off between constant and pulsing 
treatments, where a constant dose results in a lower total pathogen burden, but a high probability of resist-
ance compared to pulsing. A clear question that follows is whether these results require a specific pulse dura-
tion or not. We find that our results (Fig. 3) are driven by the proportion of time that treatment is applied, 
provided that the drug pulse is reasonably short (see Supplementary Information S4). For example, the out-
comes for a treatment frequency of once per day are the same as treatment twice per day with a shorter dose 
duration. While this is true across the range of treatment frequencies that we considered (from four times per 
day to every second day), this would not hold for very long dose durations, as these would begin to resemble 
constant treatments.

Our parameter values do not come from empirical studies, but from previous theoretical work19. However, 
we wish to emphasise that our assumptions in parameter choices are fairly conservative. First, we assume that the 
replication rate for wild type pathogens is higher than resistant, but the parameter value is only 1% higher, which 
is conservative. The second key assumption is that antibiotics affect wild type microbes at a lower concentration 
than resistant – which is, of course, the definition of resistance. Further, there is a wealth of empirical results that 
supports the qualitative features of our results (Fig. 3), the ‘inverted U’ shape, where the probability of resistance 
peaks at intermediate doses19,31. Hence, we believe that our results would hold for any system, provided that there 
is a cost of resistance.

These outcomes can be understood in terms of absolute and relative fitness of microbes32. Resistant strains 
have a selection advantage over wild types whenever treatment reduces the fitness of the wild type below that of 
the resistant strain, and when the dose concentration is below the mutant resistant concentration (i.e. the required 
dose concentration to suppress resistant strains). If it is not possible to force the absolute fitness of the resistant 
strain to be negative, then the only way to control it is to ensure that, at times, its relative fitness is less than the 
sensitive strain. It is important to note that missed treatments are not equivalent to these pulsed strategies and it 
has been established that missing doses can lead to resistance in long-term treatments, such as for HIV33. As these 
treatments are sustained for long periods without resistance emerging, it is likely that the dose concentrations are 
well above the mutant resistant threshold; in such circumstances, pulsing would not help.

There is a foundation for testing these aspects of treatment experimentally. For example, it has been found 
experimentally that reducing the total duration of treatment can reduce the prevalence of resistance without 
impacting the disease burden11, and experiments have found that using multiple drugs to treat disease can be 
effective34,35. However, pulsed treatments have yet to be deliberately and systematically tested empirically. For 
systems with multiple drugs, the number of potential single and combination strategies increases quickly, and 
modelling has an important role to play in indicating which type of strategies will be likely to succeed. Similar 
ideas are also being explored in cancer treatment, where high doses of chemotherapy hasten the evolution of 
resistance to treatment36, and astute use of multiple drugs seems to be a way forward37,38. However, it has also been 
found experimentally that altering treatment doses, or even skipping doses, can improve individual outcomes 
substantially23. The success of these novel treatment strategies in cancer treatment suggests that we may make 
similar progress using novel antibiotic treatment schedules.

The drug strategies that we suggest here have pharmacokinetics and pharmacodynamics that are idealized 
representations of those usually observed. However, the absorbance and excretion rates of some drugs may be a 
reasonable approximation to our pulses. The type of drug that would best fit with our model would have a short 
half-life and might be too toxic to use continuously above the mutant resistant concentration; two features that 
would generally be avoided in drug development, but that might be viable for pulsed treatment regimes. It may 
also be possible to use combinations of drugs that interact to produce suitable drug pulses. Future theoretical 
explorations should also be extended to more realistic dose and drug dynamics.

Antibiotic resistance poses one of the greatest risks to human health and well-being. It is unlikely that there 
will be a single solution to the problem, and continuing drug development, limiting agricultural use of antibi-
otics and prudent use of antibiotics in human health are all important measures. There is no strong precedent 
for studying pulsed treatments in drug studies, however, there is a robust history of research on perturbations in 
ecology25,39; this could be used as a basis for novel experimental design for in vitro and in vivo experiments. While 
pulsed treatments will not succeed in every situation, our work suggests that, in some cases, they may be able to 
reduce antibiotic resistance without any negative impact on the patient. This is a shift from previous thinking, 
where the aim of any treatment strategy is to avoid doses below the mutant resistant threshold13,19. Our approach 
thus opens the way to additional testing of drugs currently deemed unacceptable, and to reusing old or existing 
drugs in new ways. Exploring these types of novel treatment regimes may thus usefully contribute to the fight 
against antibiotic resistance.
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